Maximize What Matters: Predicting Customer Churn With Decision-Centric Ensemble Selection

نویسندگان

  • Annika Baumann
  • Stefan Lessmann
  • Kristof Coussement
  • Koen W. De Bock
چکیده

Churn modeling is important to sustain profitable customer relationships in saturated consumer markets. A churn model predicts the likelihood of customer defection. This is important to target retention offers to the right customers and to use marketing resources efficiently. The prevailing approach toward churn model development, supervised learning, suffers an important limitation: it does not allow the marketing analyst to account for campaign planning objectives and constraints during model building. Our key proposition is that creating a churn model in awareness of actual business requirements increases the performance of the final model for marketing decision support. To demonstrate this, we propose a decision-centric framework to create churn models. We test our modeling framework on eight real-life churn data sets and find that it performs significantly better than state-of-the-art churn models. Further analysis suggests that this improvement comes directly from incorporating business objectives into model building, which confirms the effectiveness of the proposed framework. In particular, we estimate that our approach increases the per customer profits of retention campaigns by $.47 on average.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Techniques to Predict Customer Churn in Telecommunication Industry

In present days there is huge competition between various companies in the industry. Due to this companies pay more attention towards their customers rather than their product. They become aware of customer churn issue. Basically when a customer ceases one’s relationship with the company, this misfortune of relationship is known as customer churn. Various data mining approaches are used to pred...

متن کامل

Modeling churn using customer lifetime value

Abstract The definition and modeling of customer loyalty have been central issues in customer relationship management since many years. Recent papers propose solutions to detect customers that are becoming less loyal, also called churners. The churner status is then defined as a function of the volume of commercial transactions. In the context of a Belgian retail financial service company, our ...

متن کامل

Negative Correlation Learning for Customer Churn Prediction: A Comparison Study

Recently, telecommunication companies have been paying more attention toward the problem of identification of customer churn behavior. In business, it is well known for service providers that attracting new customers is much more expensive than retaining existing ones. Therefore, adopting accurate models that are able to predict customer churn can effectively help in customer retention campaign...

متن کامل

A novel cost-sensitive framework for customer churn predictive modeling

Customer churn predictive modeling deals with predicting the probability of a customer defecting using historical, behavioral and socio-economical information. This tool is of great benefit to subscription based companies allowing them to maximize the results of retention campaigns. The problem of churn predictive modeling has been widely studied by the data mining and machine learning communit...

متن کامل

Predicting credit card customer churn in banks using data mining

In this paper, we solve the customer credit card churn prediction via data mining. We developed an ensemble system incorporating majority voting and involving Multilayer Perceptron (MLP), Logistic Regression (LR), decision trees (J48), Random Forest (RF), Radial Basis Function (RBF) network and Support Vector Machine (SVM) as the constituents. The dataset was taken from the Business Intelligenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015